New Zealand Pollen Studies

1. KEY TO THE POLLEN GRAINS OF FAMILIES AND GENERA IN THE NATIVE FLORA.

By LUCY M. CRANWELL, Botanist, Auckland Museum.
(Read before the Auckland Institute and Museum, July 9th, 1941.)

CONTENTS.

Page

1. Introduction. Scope of key. Are pollen-grains distinc- tive? 280
2. Pollen Terminology 283
3. Percentages for Furrow and Pore Distribution in the Genera 285
4. Main Divisions of Key 290
5. Master Key 290
6. References 308

INTRODUCTION.

There is now little need to plead the value of pollen research. During the last few years great impetus has been given through the publication of Wodehouse's splendid manual and many monographic papers dealing with morphology and the determination of atmospheric pollen in hayfever studies. New workers have taken up pollen-analytical investigations of bogs in many countries outside Scandinavia, while among others Skottsberg (1936, 1939, 1940) has consistently added pollen characters to systematic descriptions of new species, and Armbruster and Oenike (1929) have traced honey poisons or impurities through surveys of the local and foreign pollen-grains in the German market product. War has arrested the publication of Erdtman's "Pollen Analysis," which has been eagerly awaited for several years.

Nearer home Mercer (1940) has made useful records of seasonal flight of wind-borne pollen in and around the city of Adelaide, and atmospheric slides have been exposed for some time at the Medical School in Dunedin, and at this Museum.

Identification of pollen-grains had proceeded slowly here for various reasons, chief being the lack of any general account of the types to be met with among the native genera in particular. A little has been published overseas by the authors already mentioned. Skottsberg (1936), for instance, has been able to remove our Pisonia to Heimerlia on the clear-cut evidence of the pollen
added to that of other floral characters; Armbruster and Oenike have dealt briefly with a few genera, e.g., Olearia and Sophora, and Wodehouse $(1935,1936)$ much more critically with about 32 genera represented in the New Zealand flora, while Auer (1933) in his Tierra del Fuegian bog researches has figured a few types common to the two countries. There are other scattered references, of course, but these seem the most significant.

During the last few years I have been attempting to remedy these deficiencies, and have so far published accounts of the pollen-grains of our beeches and conifers (1938, 1939, 1940). I began this at Professor L. von Post's suggestion (1936), in order to make more detailed analyses of peats than had been possible in our joint preliminary effort, and although I have continued field work on Te Moehau, in the Waikato, and in the South Island and Stewart Island, I feel that the considerable task of describing the pollen types of the flora as a whole has tended to by-pass my real objective-the determination of the narrower range of grains to be expected in quantity in recent deposits.

However, the collection of pollen-slides now available (over 1,200 numbers, with duplicates made by different methods) will be invaluable as reference sets for other workers as well as for myself, especially when the Atlas of figures and descriptions is published. The prior appearance of the key is due to its comparative brevity and its value in identification pending the appearance of the Atlas, which may well be delayed in these times. The main collection will be kept at Auckland Museum, and a second set is being transferred to the Botany Section, Plant Research Bureau, Wellington, in appreciation of assistance given by Dr. H. H. Allan (and his staff) in his supervision of the grant I received between 1937 and 1939. This grant, for which I again express thanks to the Department of Scientific and Industrial Research, covered most expenses and provided an excellent parttime assistant in William F. Harris (now overseas with the 5th Field Ambulance), who made practically all the preparations during that time, exposed atmospheric slides almost daily for 18 months, and followed every stage of the work with care and enthusiasm.

Most of the slides were made from fresh material: in some few cases only dried flowers could be obtained, and for these I am indebted to botanists in a number of herbaria.

SCOPE OF KEY.

The key is planned to enable anyone with elementary know. ledge of the subject to track down at least the families of grains investigated. For most applications a generic determination is sufficient, and more is rarely made possible here, in order to save space and possible confusion, unless there are significant breaks within a genus, as between the Nothofagus fusca type and the menziesii type (Cranwell 1939). In the Atlas a systematic arrangement will allow of short keys to make identifications more precise within many of the genera.

A family may be characterised by a single type of pollengrain, and where the genera are numerous striking uniformity can usually be recognised. From the systematic viewpoint many families are very weakly represented in New Zealand, and it would naturally take a much wider range of genera to be confident as to the basic form of pollen-grain for a family. In some families more than one type will turn up; comparison has been made with exotic material as far as possible, and this has helped greatly in interpretation, e.g., Myosotidium pollen has been contrasted with that of Cynoglossum (Boraginaceae), Carpodetus with that of the Lord Howe Colmeiroa (in the same section of the Saxifragaceae), and so on.

Altogether 105 families are dealt with, 339 genera being under survey, and Hutchinson (1934) has been followed in separating the Agavaceae, Smilacaceae and Philesiaceae from the Liliaceae and in removing Hypoxis from the Amaryllidaceae. Practically all the genera have been keyed. The Kermadecs Ageratum and Canavalia (both three-furrow types), Ezwartia, Scleranthus, Logania (male flowers not available) and the elusive Phrygilanthus are the exceptions among the dicotyledons. On the other hand, poor material of a few genera was available, so that Korthalsella, Spergularia and Tetrachondra are placed with some hesitation. In the monocotyledons three were neglected of necessity, and a number from choice (a) in the grasses, whose grains are so very uniform, (b) in the orchids, where very few types occur; in both these families detailed work seemed more suited for special study in leisurely times. Zostera pollen is well known, but the species rarely flower in this country; male flowers were collected by Miss L. B. Moore and myself at Doubtful Sound in 1940, but were lost on the same trip. Lemna pollen was not found; according to Hegelmaier's figure and note (1868) it belongs, as would be anticipated, in Section I:A:; its exact position there will depend on whether the intine is thin or thick and the exine continuous. Of Hydatella (Juncella) male flowers have never been found.

Whatever the shortcomings of the key, it should relieve much tedious work in eliminating the host of "possibles" that bewilder the investigator of our peats, etc., in the beginning; and I trust it will give an idea of how closely the pollen-grains reflect phylogeny, and of how much more attention they should receive in systematics. Some evidence in the ever-fresh monocotyledondicotyledon controversy is given here, but not reviewed. That must wait, fascinating as it is.

Are Pollen Grains Distinctive?-It is worth stressing here that pollen-grains should not readily be confused with other bodies in mixed preparations. The following sketches (text figs. 1 and 2) and key show how they differ from most pteridophyte spores:-

Grains with triradiate crests-Spores of ferns and fern allies. Grains without triradiate crests-Pollen Grains of flowering
plants.

Text figs. 1 \& 2: Spores of Flowerless Plants, showing the triradiate crest.

1. Lycopodium varium spore (44μ in diameter; Factor 2; see p. 285) ; crest almost symmetrical.
2. Tniesipteris tannensis spore (72μ in diameter; Factor 1; see p. 285) ; crest strikingly asymmetrical. The short arms of the crest may be more reduced in Tmesipteris and Psilotum.

Reference to a case of superficial similarity was made as follows (Cranwell 1940): "In peats, etc., the most reduced forms of rimu pollen might be confused with Lycopodium spores. The author has found the two together in surface peats from Te Moehau. The spores were larger, however, and were characterised by coarser sculpture, a clear golden colour, and their more or less strongly developed triradiate crests along whose lines rupturing occurs." Wodehouse (1935) points out that Abies and some genera of the Magnoliaceae possess signs of a crest whose arms he considers to be "homologous with the radii of the triradiate crest of fern spores."

Teleutospores of fungi are, of course, easily recognised; other types of spores can be eliminated by reference to the very small Acolpate section in the master key.

POLLEN TERMINOLOGY.

Few definitions are really necessary, as it is taken for granted that readers will have access to Engler's account of the angiosperms (1926) and especially to Wodehouse's "Pollen Grains" (1935).

ACOLPATE: Lacking furrows and pores.
ASPIDATE: With a shield-shaped thickening around a germ-pore, associated with the exine or more often below it; e.g., Nothofagus (fusca type), Haloragis, Coriaria (Pl. 55, fig. 17) and causing the "pouting" characteristic of these pores: associated with anemophily.

CELL CONTENTS, likewise, are not stressed, unless they have striking hyaline bodies assisting in the rupturing of the walls, e.g., in the Juncaceae, and below the pore-membrane in some of the Papilionaceae.

COLPATE: Possessing furrows and/or pores.
CROSS (or transverse) FURROW: An elongate gap, usually in the inner wail of the exine, crossing furrow at 90° on equator; e.g., Araliaceae; sometimes confiuent, e.g., Exocarpus.

DORSAL (proximal): Referring to the side of the grain originally facing inward in tetrad formation.

EXINE: The cuticularised outer coat of the grain, very resistant, and therefore very important in fossil studies. Its texture may be rough, or smooth; its pattern (including sculpture and structure sensu Erdtman 1936) may be lacking, but is generally flecked-granular; warty-papillate; truly pitted (a cycad character, according to Wodehouse (1935), seen in Agathis also); reticulate-pitted or reticulate (the lacunae or pits rather small), lophate (pits very large, e.g., Taraxacum) ; spiny or spinulose or echinolophate). See Plates $53-55$. Thickness may be very useful in identification. The following grading has been used throughout, and will be found useful, but it must be remembered that the layers of the exine swell differently in preparation. Erdtman's method (1936) causes considerable swelling, and is preferred for fossil grains.

Measurements of Exine.

Exine may be lacking in some water-plants, e.g., Zostera.
FURROW CONFIGURATION: For descriptions see Wodehouse (1935, Chapter VII.).

FURROW RIM; PORE RIM: Lips of the furrow and pore respectively.
GERMINAL FURROW: A groove or opening in the exine which provides for (a) volume-change, permitting the intake rapid of moisture, and (b) the passage of the pollen-tube, either through a pore or through a break in a poreless (e.g. Ranunculus) or weakly pored furrow membrane (e.g., Cruciferae).

GERM PORE: The papilla-like place from which the pollen-tube emerges; enclosed by the furrow membrane, as in Celmisia (Pl. 54, fig. 13) or penetrating the exine through loss of the furrow, as in Paratrophis (Pl. 55, fig. 16): sometimes with a vestibule, e.g., Fuchsia, Coprosma, Corynocarpus (Pl. 55, fig. 15) between the aperture and th einner wall of the exine flooring the pore or modified furrow.

INTERCOLPAR: Referring to surface areas lying between the furrows.
INTINE: The essential coat, normally thin, perhaps thickened below furrow or pore, often increasing greatly in thickness when the exine and its organs are reduced. As the intine is destroyed by many methods of preparation, and as it is not preserved in peats (though often reported from fossil material), it is not given much emphasis in this key, unless its fresh condition is especially striking, as in the following examples:-
(a) Furrow weakly defined: intine locally thickened-Laurelia novaezelandiae and Collospermum hastatum (syn. Astelia solandri).
(b) Furrow eliminated: intine enormously thickened "over circuit of grain" (Smith and Wodehouse, 1938)-Agathis and members of the Lauraceae (Beilschmiedia, Pl. 53, fig. 1).

VENTRAL (distal): Referring to the side originally facing outward in the tetrad, very clearly recognisable in Podocarpus (Pl, 53, fig. 6).

PERCENTAGES FOR FURROW AND PORE DISTRIBUTION IN THE GENERA.

About 95% of the grains are simple; in something less than 5% is retention in tetrads obligate. Drimys and Drosera are characterised by such tetrads, while in certain species of Epilobium and in many of the orchids, grains may occur either closely or loosely united, or they may even be quite free. Because of this diversity the percentages are based on the nature of the single unit, even where tetrads may occur.

ACOLPATE		10.5\%
COLPATE		89.5\%
One furrow	11.5\%	
One pore	10%	
Two pores	1.5\%	
More than two pores	11.5%	
More than one furrow (typically with 3 furrows and pores)	55%	

Plates 53-55. Figs. 1-25. Illustrating exine patterns, furrow configurations, behaviour of furrows and pores, etc. All grains are greatly enlarged, having been drawn 1,000 (Factor 1), 2,000 (F.2), or 4,000 (F.4) times natural size, and reduced one-third in reproduction for this paper.

Plate 53. Figs. 1-6.

1. Taraire (Beilschmiedia taraire : Lauraceae); Acolpate: exine spiny; intine very thick; size 32μ (Factor 2).
2. Tutu (Coriaria arborea: Coriariaceae). Reduced Tricolpate, showing internal thickening around pores; size 22μ (F.2).
3. Candlenut (Aleurites moluccana : Euphorbiaceae). Acolpate: exine spıny; size 38μ (F.1).
4. Horopito (Drimys axillaris : Magnoliaceae). Tetrahedral Tetrad, the components Monocolpate. Exine open-reticulate; size of components 23μ (F.2).
5. Hutu (Ascarina Iucida : Chloranthaceae). Monocolpate: furrow unexpanded (type rare in dicotyledons). Exine pitted; size 23μ (F.2).
6. Miro (Podocarpus ferrugineus : Podocarpaceae). Monocolpate, bearing bladders or air-sacs. Size of grain 60μ (F.1). (a) furrow open; (b) furrow closed and bladders drawn together.

Plate 54. Figs. 7-14. Tricolpate Types, mainly polar views.
7. Mitrasacme novaezelandiae : Loganiaceae. Exine pebbled; furrows unexpanded; size 19μ (F.2).
8. Piripiri (Acaena sanguisorbae : Rosaceae). Grain angled, with smaller papilla-like pores between angles; furrows obsolescent. Exine faintly reticulate or granular; size 24μ (F.2).
9. Whau (Entelea aborescens : Tiliaceae). Equatorial view with one furrow showing; note 2 pores. Exine reticulate-pitted; size 26μ (F.2).
10. Kowhai (Sophora microphylla : Papilionaceae); grain over-expanded, rupturing the weak furrows. Exine patternless; size 24μ (F.2).
11. Iceplant (Mesembryanthemum australe : Aizoaceae). Exine granularpapillate; size 23μ (F.2).
12. Taraxacum magellanicum (Compositae). Exine echinolophate; i.e., armed on ridges of lacunae. Note that furrow consists of 3 linked lacunae. Size 16μ (F.4).
13. Celmisia coriacea (Compositae). Exine spiny; size 20μ (F.2).
14. Pachystegia insignis (Compositae). Surface granular, with massive spines; size 20μ (F.2).

Plate 55. Figs. 15-25.
15. Karaka (Corynocarpus laevigatus : Corynocarpaceae). Dicolpate, patternless; size 22μ (F.2).
16. Milktree (Paratrophis opaca : Moraceae). Dicolpate, patternless; size 17μ (F.2).
17. Tutu (Coriaria arborea : Coriariaceae); see 2. Furrows almost eliminated; exine flecked; size 20μ (F.2).
18. Rata (Metrosideros robusta : Myrtaceae). Furrows linked; size 16μ (F.2).
19. Toru (Persoonia toru : Proteaceae). Three-pored; furrows lost; exine papillate-granular; size 42μ (F.1).
20. Parapara (Heimerlia brunoniana : Nyctaginaceae). Fifteen-furrowed (furrows coinciding with pores); exine flecked. Reduced type. Size 48μ (F.1).
21. Alternanthera sessilis (Amaranthaceae). Twelve-pored; lophate; size 15μ (F.2).
22. Kohekohe (Dysoxylum spectabile : Meliaceae). Furrows 4, vestigial; exine flecked; size 36μ (F.1).
23. Glasswort (Salicornia australis : Chenopodiaceae). Many-pored; exine flecked; size 23μ (F.2).
24. Hibiscus trionum (Malvaceae). Many-pored; surface pitted, bearing long spines; size 130μ (F.1).
25. Kaiku (Parsonsia heterophylla : Apocynaceae). Furrows lost; pores with ornamented collars; exine patternless; size 26μ (F.2).

Plate 55.

PAGE INDEX TO MAIN DIVISIONS OF THE KEY.

I. GRAINS SIMPLE, p. 290.
(A) Grains Acolpate, p. 290.
(B) Grains Colpate, p. 291.

1. Monocolpate, p. 291.
2. Typically Tricolpate, p. 294.
(a) Furrows strongly defined: Furrowed Grains, p. 294.

Exine (1) spiny, (2) reticulate, (3) reticulate-striate, (4) pitted, (5) papillate-granular, (6) finely granular, (7) patternless.
(b) Furrows almost eliminated: Intermediate, p. 303.
(c) Furrows eliminated: pores present. Pored Grains, p. 304.
II. GRA!NS COMPOUND, in TETRADS, p. 307 .
(A) Grains Colpate, p. 307.
(B) Grains Acolpate, p. 307.

MASTER KEY.

(*Signifies treated under more than one heading, owing to the diversity in exine pattern, or to behaviour of the furrow.)
Measurements are in microns: unless otherwise stated they always refer to size of the grains, which range from 6μ (Myosotidium) to 130μ (Hibiscus).

$$
\mu=0.001 \mathrm{~mm}
$$

I. GRAINS SIMPLE.

(A) GRAINS ACOLPATE, i.e., without furrows and pores, or recognisable vestige of them. Exine almost invariably very thin and collapsible; intine often very thick, swelling greatly when moist. Reduced forms.

1. Exine lacking over all or part of grain; intine not thick.
(a) Grain elongate.

Grain threadlike, up to $2,500 \mu$ long; exine lost or suggested by odd granules NAIADACEAE

Zostera \dagger

> Grain arcuate, 50 to 70μ long; exine reticulate except over ends and on convex side $\ldots \ldots \ldots . .$. NAIADACEAE Ruppia
(b) Grain spheroidal, 25 to 35μ, reduced reticulate . . NAIADACEAE Size 30μ or more Lepilaena Size less than 30μ.. Zannichellia
(c) Grain spherical, spinulose LEMNACEAE Lemna ${ }_{\text {+ }}$
2. Exine continuous; intine typically very thick.
(a) Exine spinulose.

Spines crowded, blunt; $36 \mu \ldots$. EUPHORBIACEAE
Aleurites
Spines scattered, sharp . LAURACEAE
Spines conspicuous, up to 2μ long.
Size 32 to 42μ; intine 4 to $6 \mu \ldots$. Beilschmiedia
Size 25 to 32μ; intine thinner Litsaea
Spines weak, rather warty; 24μ...................... Cassytha
(b) Exine not spinulose.

Grains spherical, or almost so.
Exine pitted or flecked, intine swelling enormously.
CONIFERAE
Size 40 to 50μ; exine truly pitted Agath is
Size 24μ; exine flecked Libocedrus
Exine reticulate-pitted, collapsing CYPERACEAE§
Exine reticulate, firmer.
Size 9 to 14μ; exine weak PIPERACEAE
Peperomia
Size 26μ; exine weakNAIADACEAE
Potamogeton
Grains not spherical.
Grain ellipsoidal; reticulate-pitted; 36 to 46μ
MONIMIACEAE
Laurelia**
Grain "oblong," strongly reticulate, 28μ.... ORCHIDACEAE
Orthoceras type
Grain "humped" on one side, flat on the other;
17 to 12μ; patternless BAGNISIACEAE
Bagnisia
(B) GRAINS COLPATE, i.e., with furrows and/or pores.

1. GRAINS MONOCOLPATE, i.e., with a single furrow or pore, sometimes vestigal.
(a) Bladders present. Grain with a dorsal "cap," and a distensible membrane flooring furrow on ventral side. Bladders 2, rarely 3, sometimes fused . . PODOCARPACEAE (Pl. 53, figs. 6a, 6b).
(1) Bladders 2; furrow elongate.

Bladder thickenings radial, coarse; cap not strongly pitted; grains 33 to 50μ; and 52 to 74μ overall

Dacrydium kirkii
D. biforme
D. bidwillii

Bladder thickenings reticulate, delicate; cap pitted; furrow more active; grains mainly over 45μ; and 45 to 86μ overall Podocarpus
(excl. P. dacrydioides)
(2) Bladders 3, fused, enclosing a triangular or almost circular furrow; cap thick, usually pitted.

Membrane triangular; bladders 3, large, delicate, with reticulate thickenings; cap very thick, grains 42 to 52μ; size overall about $75 \mu \ldots$. Podocarpus dacrydioides
Membrane not angular.
Bladders fused or almost so P. dacrydioides
(about 5\%)
Bladders rudimentary, thickenings radial; size 38 to 48μ........................ . Dacrydium cupressinum D. kirkii group (atypica!)
§For Cyperaceae sometimes involved, refer to section I. (B) (b) (2), giving the typical (i.e., less reduced) forms.
**Not typical.
(3) Bladders rudimentary, forming frills projecting little beyond the body of the grain; thickening radial, coarse; furrow shallow.
Size about 45μ; cap coarsely granular to reticulate; exine very thick

Dacrydium
cupressinum
Size 21 to 30μ; cap flecked; exine thin; bladders clearer . Phyllocladus
(b) Bladders absent; furrow either strongly functional, and
then deeply invaginated when unexpanded, becoming very conspicuous when expanded; or much reduced, the intine generally being enormously thickened below furrow or now more porelike area
most MONOCOTYLEDONS few DICOTYLEDONS
(1) Furrow very well defined.
a. Grain angular, flattened; furrow sharply 3-armed when unexpanded, crestlike.

Exine strongly reticu membrane; $30-40 \mu$.	$\begin{aligned} & \text { over } \\ & \text { AGAVACEAE } \\ & \text { Phormium } \end{aligned}$
Exine finely pitted; 27μ	LILIACEAE Herpolirion
Exine patternless; 32μ	LILIACEAE Dianella

b. Grain elongate; furrow very long.
i. Furrow wide, rims typically thickened; channelled when unexpanded, membrane bulging when expanded.
Exine rather thick.
Size 50μ, membrane patternless.
Exine flecked . PALMAE Rhopalostylis
Exine granular-pitted LILIACEAE
Bulbinella
Size 30μ or less.
Size 30μ; reticulate to pitted; smoother on
membrane AGAVACEAE
Cordyline indivisa
Size 24μ; pitted all over CHLORANTHACEAF.
Ascarina
Size 10 to 16μ; exine pitted, warty on mem-
brane PIPERACEAE Macropiper
Exine thin, pitted all over.
Size 28 by 16μ, pits faint LILIACEAE
Iphigenia
Size 33μ; pits stronger HYPOXIDACEAE
Hypoxis
Exine exceedingly thin, patternless; 30 by 22μ
IRIDACEAE
Libertia
ii. Furrow narrow, sometimes riftlike; rims unthickened.

Exine reticulate or pitted; furrow usually clear.

Furrow almost encircling grain; mesh graded; 40μ

MONIMIACEAE
Furrow much shorter.
Size 28μ; grain flattened; mesh bold opposite furrow AGAVACEAE Cordyline banksii, australis
Size 44 by 30μ; mesh reduced against furrow LILIACEAE

Arthropodium
Exine granular; furrow weaker.
Size 23μ papillate LILIACEAE
Astelia trinervia* A. cunninghamii*

Size 33μ; exine flecked SMILACACEAE** Ripogonum
Size 40μ; exine flecked PHILESIACEAE*
Luzuriaga
(2) Furrow vestigial, reduced to a rounded porelike area, or indicated only by a rift in the exine. Exine very thin, pattern reduced; intine typically very thick, swelling to rupture weak area.

Grains spheroidal; more ellipsoidal when unexpanded.
Furrow rift crescentic; exine reticulate; 24μ
NAIADACEAE
Triglochin
Furrow barely indicated; broad or striplike.
Exine papillate LILIACEAE
Size 23μ; papillae sharp Astelia trinervia*
A. cunninghamii*

Size 35μ; granules of 2 sizes A. nervosa
Size 40μ; exine with surface and embedded
granules Collospermum hastatum
Exine flecked.
Size 33μ
SMILACACEAE*
Ripogonum
Size 40μ................................ PHILESIACEAE*
Luzuriaga
Size 50μ; finely pitted
RESTIONACEAE
Leptocarpus
Exine pitted-reticulate; $30 \mu \ldots$. . CYPERACEAE
Fimbristylis
Exine pitted with shining granules; 24 to 34μ
CENTROLEPIDACEAE
Hydatella (Juncella) ?
Size 34μ; exine granular Gaimardia Size 24μ; exine fragmented Centrolepis

Grains typically pouch-shaped, the "pores" constricted by coarsely granular collars; exine characterised by brilliant embedded and additional surface granules RESTIONACEAE

\dagger Male flowers of the native species so far unknown.

```
Grains ovoid, wedge or gourd-shaped. Furrow-pore
        at broad end; mesh usually obscure ... C'YPERACEAE
        Pore smooth; exine flecked-pitted.
        Size 30\mu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mariscus*
        Size 40\mu .......................................... Schoenus
```



```
        Size 45 to 55\mu ................................. Eleocharis*
        Pcre rough; granules few; 38\mu ................ Uncinia
        Pore granules numerous
        Exine mainly pitted; grains angular.
            Size 30\mu ........................... Scirpus nodosus
            Size 40\mu; intine very thick at 3 angles ... Oreobolus*
            Size 45 by 27\mu ...................... Desmoschoenus
            Size 45 to 55 \mu ............................ Eleocharis*
            Exine mainly flecked; 46 to 56\mu.
                    Exine meshed; grain curved at narrow
                        end . . . . . . . . . . . . . . . . . . . . . . . . . . . Carpha
            Exine pitted; grain ovoid ........... Eleocharis*
Grains almost spherical; "furrow" obscure; exine
            flecked.
        Size less than 30\mu .................... Cladium sinclairii
        Size 30 to 40\mu ................................... Oreobolus*
                        Mariscus*
                            Lepidosperma
(3) Furrow completely lost: pore small, sharply defined.
            Grains ovoid or spherical; exine very thin.
Pore not striking; intine thick under pore.
            Exine pitted.
            Pits bold; 22\mu
                                    SPARGANIACEAE
                                    Sparganium
            Pits weak; 30\mu ........................... TYPHACEAE
                                    Typha
Exine patternless; pore lateral if grain ovoid; 16
    to 24\mu
                                    PANDANACEAE
                                    Freycinetia
Pore striking, brilliantly rimmed, with central oper-
    culum or cover; exine flecked; intine fairly
    thick; 20 to 70\mu ........................... GRAMINEAE
    Size over 40\mu ................................ e.g. Danthonia
                                    Arundo
    Size well under 40\mu ......................... e.g. Festuca
                        Poa
```

2. GRAINS NOT MONOCOLPATE: typically tricolpate, very rarely dicolpate, sometimes hexacolpate (or tetracolpate by reduction), or polycolpate.
(a) FURROWS STRONGLY DEFINED; typically 3, meridional (tricolpate), each with a nequatorial pore: 6 or 4 furrows not uncommon; never 2 in normal grains. Furrowed grains.
(1) EXINE SPINY.

Furrows 5-8, meridional; spines short, blunt; 55μ
CUCURBITACEAE*
Sicyos
Furrows and pores 3 or occasionally 6 or 4.

```
Surface patternless or granular; grains usually
    oblately flattened; size 14 to }34\mu\mathrm{ ... COMPOSITAE
```

Surface flecked at most; furrows typically short; pores compensatingly large.

Spines small.
Size typically less than 20μ; pores very

Size 14 to $20 \mu \ldots \ldots \ldots$. Gnaphalium: Raoulia Leucogenes: Cassinia Helichrysum
Size 30μ; spines widely spaced Craspedia
Size typically 20 to 25μ............ (Senecioneae)
Furrows long and well-defined; spines
about 2.5μ................... Brachyglottis
Furrows much weaker.
Spines less than 3.5μ, crowded Traversia
Erechtites
Spines 3.5μ; widely spaced (6μ) Senecio
Spines large; up to 6μ long; 20μ...... (Heliantheae)
Spines very long, curved Bidens
Spines much shorter, bases broader
Siegesbeckia
Surface granular; furrows stronger; pores often large; spines typically rather short, broad-based, conical, hexagonally grouped.

Surface rather coarsely granular; spines sharply pointed; 17 to $34 \mu \ldots$... (Anthemideae) Granulation heavy; furrows strong; over 20μ... Cotula Granulation and furrows weaker; less than 20μ.
Pores very large; spines $3.5 \mu ; 18 \mu$. Abrotanella Pores and spines smaller; $16 \mu \ldots \ldots$. Centipeda

Surface weakly granular; furrows tapering strongly; 20 to $33 \mu \ldots$. . (Astereae)

Spines massive, over 4μ, striate except for tips; $33 \mu \ldots .$. Pachystegia

Spines not massive, very short, or up to 4.5μ.
Furrows tending to rupture.
Spines 3 to $4.5 \mu ; 20$ to $30 \mu \ldots \ldots$..... Celmisia
Spines short; 20μ............... Brachycome Spines very short; 20 to 27μ........... Olearia

Furrows not rupturing; spines short.
Furrows short; size 25μ........ Lagenophora Furrows long; spines crowded; 20 to
24μ......................... Pleurophyllum
Vittadinia
Surface echinolophate, lacunae polygonal. Grains tricolpate, or tetracolpate (the furrows then modified).

Lacunae few (15 or 20), functionally differentiated, 3 or 4 alternate on equator occupied by conspicuous pores; polar plates present; furrows modified; spines long, sharp COMPOSITAE (Cichorieae)
Furrows typically 3; (lacunae 15).Size 16 to 26μ; ridges high, spines long;plates bold Taraxacum
Size 26 to 36μ, plates mainly 3 - or 6 -armed.
Plates striplike Crepis, Picris
Plates broad; spines longer Microseris
Furrows typically 4; (lacunae 20), $26-33 \mu \ldots$ Sonchus
Lacunae many, functionally undifferentiated;
furrows long, tapering, membrane smooth,
pore or whole membrane bulging.
Mesh uniform; 26μ........... STACKHOUSIACEAE
Stackhousia*
Mesh larger in intercolpar areas; 20 to 45μ
(2) EXINE RETICULATE (tending to grade into (4) see p. 297) ; furrows tapering.

Furrows interrupted by 2 pores; 23 to 30μ.. MYOPORACEAE
Myoporum*
Furrows with a single equatorial pore.
Pattern unmodified, or almost so, over membrane;
furrows ill-defined.
Exine thick, mesh bold; pores large.
Grains over 45μ, uniform
GERANIACEAE
Size 50μ; mesh rigid.................. Pelargonium
Size 45 to 80μ; exine thicker, mesh more open

Geranium
Grains less than 45μ; mesh smaller.
Furrows 3, 6, outlined, and membrane transversed by coarse granules; 30 to $40 \mu \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. OXALIDACEAE

Oxalis
Furrows 4, 3, not defined by granules; 28μ
STYLIDIACEAE
Donatia*
Exine thin; pores lacking or obscure.
Mesh very bold, strongest in intercolpar area
CRUCIFERAE
Mesh continuous; $20 \mu \ldots . .$. Notothlaspi Mesh irregular against membrane; 25μ. Cardamine
Mesh reduced, rather granular; $18 \mu \ldots$. OLEACEAE
Pattern Olea*
Pattern terminating (and reduced) at furrow margin; furrows diamond-shaped; pores circular, conspicuous.
Exine thick.
Ridges and mesh rough; pores not large. Size 25 to 45μ; ridges subechinate

GENTIANACEAE

Gentiana*

Size 26μ; ridges pebbled ... STACKHOUSIACEAE
Stackhousia*
Ridges of mesh smooth; pores large.
Cross-furrow present; exine very thick;
$30 \mu \ldots \ldots \ldots \ldots \ldots$...................................
Meryta
Cross-furrow lacking; exine thinner; 27μ
VERBENACEAE
Avicennia
Exine thin; membranes tending to rupture; pores weakly defined ... SCROPHULARIACEAE
Size 25μ; furrows expanding to give angular
outline Ourisia
Size 36μ.................................... . Siphonidium
Size 45μ; furrows narrower and less vigor-
ous; mesh fainter
Euphrasia
(3) EXINE RETICULATE-STRIATE ("finger-print" pattern).
Furrows diamond-shaped, not meeting; grains
spheroidal; size 27μ.......... CARYOPHYLLACEAE
Hectorella
Furrows very narrow, untapering, commonly 4, join-
ing to form angular "islands" at the flattened
poles; 28μ.............................. GENTIANACEAL
Liparophyllum**
(4) EXINE PITTED (reduced reticulate), the lacunae rounded or angular, mainly less than 2μ across (see also reticulate).
Exine boldly pitted, typically rather thick.
Furrows coinciding with elliptic pores, 3 or 6 ; 35μ

HALORAGIDACEAE
Gunnera*
Furrows normally developed.
Furrows long and wide, tapering sharply.
Pore rims thickened.
Exine thick; pores large, elongate, without vestibules; 28 to 44μ..... GOODENIACEAT
Size 28μ..................................... Scaevola
Size 44μ.. . Selliera
Exine thinner; pores small, circular, with
large vestibules; $25 \mu \ldots . . .$. . CORNACEAF
Griselinia
Pore rims unthickened, pores small or obscure.
Exine thick; pores papillate; 20 to 45μ
EUPHORBIACEAF
Size 20μ; pits angular Poranthera
Size 33μ; pits rounded Euphorbia
Size 38μ; pits irregular Homalanthus
Exine thin.
Surface smooth; furrows 3, 6 or 4 .
Size 23 to 30μ; 2 pores often clear in each furrow MYOPORACEAE

Myoporum*
Size 33μ; pits irregular TILIACEAE
Entelea
Surface corrugated; pits small, round; exine thinner; 28 to $35 \mu \ldots$. VERBENACEAE

Vitex
Furrows long and narrow.
Pores sharply defined, underlain by cross-
furrows.
Exine thick; pores typically transverse.
Pitting bold; furrows very narrow; 30 "
SAPINDACEAE
Dodonaea
Pitting less bold; furrows wider.
Size 32μ; pores long CONVOLVULACEAE
Dichondra*
Size 26μ; pores shorter; cross-furrows almost encircling grain . . . ARALIACEAE

Pseudopanax
(4) contd.

Exine thin; furrows almost taperless.
Size 28 to 38μ. ARALIACEAE
Nothopanax arboreum type
Size 24μ; pores sometimes circular
POLYGONACEAE
Muehlenbeckia*
Pores not sharply defined; furrows 3,6 or 4 .
Membrane patternless; furrows $3 ; 23 \mu$
CRUCIFERAE
Lepidium
Membrane patterned except for narrow con-
fining strips, probably representing furrows; exine thin.
Furrow-strips 6, in 3 pairs; 35μ
PASSIFLORACEAE
Tetrapathaea* \dagger
Furrow-strips 3 , or 4 (narrow only when unexpanded) ; mechanism very vigorous; 42μ

VERBENACEAE
Teucridium* \dagger

Exine not boldly pitted; texture smooth; furrows 3, otherwise 6 , 4 , or rarely 5 .

Pores lacking; furrows narrow; 32μ. RANUNCULACEAE
Anemone
Pores present, but sometimes obscure.
Pores large, with very elastic membranes; furrows spindle-shaped, often tearing

PAPILIONACEAE
Pores oblong.
Pores meridional; 28μ.................... Clianthus
Pores transverse.
Size 26μ.......................... . . . Corallospartium
Size 18μ................................... . . Swainsona Pores not oblong.

Pores elliptical; 16 to 30μ.......... Carmichaeiia
Pores circular; 20 to $23 \mu \ldots .$. Chordospartium Notospartium

Pores small, often forming bulges in furrow membrane; furrows long, mainly narrow, tapering.

Pores sharply defined.
Furrows rather wide.
Size 14μ
CUNONIACEAE
Weinmannia
Size 22μ............................... RUTACEAE Melicope
Furrows narrow.
Pores slitlike, with cross-furrows.
Exine thick; $38 \mu \ldots .$. . CONVOLVULACEAE
Dichondra*
Exine thin; $22 \mu \ldots$. ARALIACEAE
Nothopanax simplex type

[^0]| Pores circular. | |
| :---: | :---: |
| Rims thickened; 18μ. | |
| Cross-furrows present | ARALIACEAE |
| | Schefflera |
| Cross-furrows absent | SAPINDACEAE |
| Rims unthickened. | |
| Size 20μ............. CAMPANULACE | |
| Size $25 \mu \ldots$. CALLITRICHACEAE | |
| | |
| | Callitriche |
| Size 38μ; furrows 5, 6 | LABIATAE |

Pores weakly defined, membrane often bulging.
Furrows wide, short; 20 to 40μ.
Grain flattened; $28 \mu \ldots \ldots \ldots$ STYLIDIACEAF
Donatia ${ }^{*}$
Grain rounded $\ldots \ldots \ldots$ CAMPANULACEAE
Size 36μ; exine fairly thick $\ldots \ldots$. Colensoa
Size 20 to 30μ; exine thinner $\ldots \ldots$. Pratia
Isotoma

Furrows narrow, long; exine thin...CRUCIFERAE
Pitting uniform.
Size 20μ......................... Pachycladon
Size 26μ.............................. Sisymbrium
Pitting graded.
Size 18μ.......................... Cheesemania

(5) EXINE PAPILLATE-GRANULAR.

Furrows 3, sometimes 6 or 4, distinct, functional.
Pores present; exine moderately thick to very thick.
Membrane unpatterned; furrows 4, or 3; 24μ
LORANTHACEAE
Tupeia
Membrane patterned; granules of 2 sizes; 20μ
LOGANIACEAE
Mitrasacme
Pores absent; membrane usually patterned,
bulging on expansion; grains spheroidal.
Size 60μ; pores obsolescent?; granules sub-
echinate CONVOLVULACEAE
Convolvulus
Size less than 50μ; no trace of pores; membrane not smooth; furrows typically wide

RANUNCULACEAE
Margins smooth; 18 to 25μ
Caltha
Margins rough or jagged.
Furrows wide; size 20 to 40μ......... Ranunculus
Myosurus
Furrows narrow, often weak; 18 to 28μ....Clematis
Furrows 4, 3, or up to 9 , coinciding with pores or both reduced and non-functional; grains strongly flattened. (See p. for more logical position.)

Size 45 to 65μ; furrows and pores 5 to 9 , vestigial
FAGACEAE
Nothofagus menziesii*
Size 27 to 43μ; furrows reduced, 4 or 3 ; pores vigorous STYLIDIACEAE**
(6) EXINE FINELY GRANULAR OR MERELY FLECKED, occasionally with additional warty granules, rarely striate; furrows typically 3 ; exine mainly thin and smooth.
Sculpture continuous, or very nearly so; furrows wide.
Pattern embracing whole surface.
Furrow distinct, whole membrane bulging on expansion.
Surface granular AIOZACEAE (Ficoidaceae) Granules uniform; furrows 6, rarely 3, meridional; 26 to 36μ............ Tetragonia Granules of 2 sizes; furrows $3 ; 26 \mu$

Mesembryanthemum
Furrow weak; pattern netted.
Pores protruding; grains angular between pores, flattened; 20 to 26μ

ROSACEAE
Acaena*
Pores lost; grains spheroidal; $18 \mu \ldots$. . OLEACEAE Olea*
Pattern lacking only on furrow "ring," continuous
over large membrane; exine thick, flecked or
pitted; 42μ
VERBENACEAE
Teucridium*
Sculpture not continuous over furrow membrane.
Sculpture patchy, flecked; 20μ.
Furrows narrow; 3, beaded on rims LABIATAE
Scutellaria
Furrows wide, 4 or more, rarely 3 or 5 ; flecked
around pores SCROPHULARIACEAE
Glossostigma
Sculpture even.
Furrows wide, meridional (unless hexacolpate).
Furrows 4, or 5, very wide, rounded at end;
pores large; exine very thick, granular;
30μ
SAXIFRAGACEAE
Ixerba
Furrows 4, or 3, tapering.
Pores fairly large.
Furrows short; $18-24 \mu$. . SCROPHULARIACEAE
Mimulus*
Mazus*
Furrows long.
Exine thick $(2-3 \mu)$, granular or pitted;
22 to $32 \mu \ldots$. PITTOSPORACEAE Pittosporum*
Exine about 2μ; furrow rim thickened;
24 to 34μ.................... CORNACEAE
Corokia
Exine thin.
Size 20 to 40μ; pores like papillae.
Pattern flecked.
Size 18μ.................. GUTTIFERAE
Hypericum
Size $c .22 \mu$......... PITTOSPORACEAE
Pittosporum*
Pattern coarser ROSACEAE
Size 18μ; rather striate Rubus
Size $\mathrm{c} .20 \mu$..................... Potentilla Acaena*, Geum
Size 35 to 55μ; pores sharply defined;
more granular
CAPRIFOLIACEAE
Alseuosmia
(6) contd.

Pores small; exine thin.
Grains less than 30μ; furrows tending to split.
Exine flecked; furrows sometimes 6
VIOLACEAE
Size 12 to 20μ...................... Melicytus
Size 25 to 32μ. Vio!a
Exine granular RHAMNACEAE
Size 25 to 32μ.................... Pomaderris
Size 20μ; exine thinner Discaria
Exine pebbled; $27 \mu \ldots . .$. GENTIANACEAE
Sebaea
Grains 36μ; furrows not rupturing
UMBELLIFERAE
Eryngium
Furrows narrow, typically 3, functioning little or at most by "hinge" action; pores equatorial, small.

Grains flattened; furrow rims parallel.
Furrows meeting to enclose polar "islands."
Size 17μ; furrows 3. MYRTACEAE
Eugenia*
Size 28μ; furrows $4 \ldots$. GENTIANACEAE
Liparophyllum*
Furrows not meeting; angles of grain truncate.
Size 18μ; exine very thin MYRTACEAE
Myrtus
Size 24μ; exine thick LORANTHACEAE
Loranthus
Grains not flattened; furrows long, usually slightly tapering; pores commonly prominent.
Grains spindle-shaped.
Size 16μ........................ . . . PRIMULAC'EAE
Samolus

Elatine
Size 24μ, pore comparatively large TETRACHONDRACEAE

Tetrachondra*
Size 26μ, pores minute . . SCROPHULARIACEAE Hebe \& Veronica

Grains more spheroidal, or ellipsoidal when contracted; pores often wider than furrows; exine flecked.

Furrows 4, or $5 ; 20 \mu \ldots \ldots \ldots$ EPACRIDACEAE Leucopogon fasciculatus
Furrows 3.
Size 16μ; exine very thin RUTACEAE
Phebalium
Size 20μ; exine thin GESNERACEAE
Rhabdothamnus
Size 26μ; furrows narrower; exine thick POLYGONACEAE Muehlenbeckia*
Size 30μ; furrows riftlike; exine fairly thick SAPOTACEAE

Sideroxylon

```
Grains dumb-bell shaped unexpanded; pores with cross-furrows; exine very thin, mesh faint; about \(20 \mu\)
UMBELLIFERAE (most genera)
Apium; Anisotome; Aciphylla; Actinotus: Daucus; Lilaeopsis; Oreomyrrhis; Schizeilema, etc.
```

(7)

EXINE PATTERNLESS (or at most obscurely flecked), very thin; surface perfectly smooth; furrows typically meridional, with or without small equatorial pores.

Grains typically tricolpate; 6 or 4 furrows occasional.
Grains strongly flattened, sharply triangular; fur-
rows narrow, linked by arci; 12 to 20μ. MYRTACEAE
Leptospermum
Metrosideros
Eugenia*
Grains ellipsoidal; furrows narrow.
Size 6 to 8μ; furrows slitlike; pores obscure
BORAGINACEAE
Myosotidium
Size 20 to 30μ; furrows long and narrow, often
vestigal; pores aspidate with cross-furrows.
Cross-furrows making equatorial circuit; size
22 by 16μ................... SANTALACEAE
Exocarpus
Cross-furrows not meeting (or rarely).
Furrows long; 20 to $30 \mu \ldots . .$. ARALIACEAE
Stilbocarpa
Furrows shorter, weaker; size 20 to 25μ
UMBELLIFERAE
Actinotus*
Coxella
Lilaeopsis*
Daucus*
Grains spheroidal or oblately flattened, sometimes rounded-triangular in outline when expanded.
Size 20μ or less; usually rather flattened.
Furrows wide and tapering; flattened.
Furrows defined; pores aspidate VIOLACEAE
Size 12 to 18μ.......................... Melicytus*
Size 19μ; exine thicker Hymenanthera
Furrows vaguely outlined; pores not aspi-

Pennantia
Furrows narrow, much longer; grains less flattened.
Grains somewhat flattened.
Size 10μ; furrows 3 or 6
CUNONIACEAE
Ackama
Size 11 to 15μ. CRASSULACEAE
Tillaea
Grains not flattened.
Size 11 to 15μ; unflecked
ELAEOCARPACEAE
11 μ............................... . . . Elaeocarpus
15μ. Aristotelia
Size 12μ; flecked near pores
SCROPHULARIACEAE
Jovellana*
(i) contd.

Size more than 20μ; furrows weakly defined, tapering.
Furrows typically 3.
Furrows wide, membranes bulging; 24μ
PAPILIONACEAE
Sophora
Furrows narrow; 28μ.... TETRACHONDRACEAE
Tetrachondra
Furrows 4, or 5, more rarely 3 .
Size 24μ; pores not aspidate
MYRSINACEAE
Suttonia
Size 21μ; pores aspidate
SOLANACEAE
Solanum
Grains not tricolpate, having 4, 5, or 6 long, narrow,
meridional (possibly oblique) furrows; pores
mainly very small, vigorous.
Grains ellipsoidal, constricted at waist; 12 to 20μ
BORAGINACEAE
Myosotis*
Grains spheroidal to discoid; exine thin.
Grains 4 -angled; $21 \mu \ldots . .$. . SCROPHULARIACEAE
Grains not angled.
Pores present.
Size 15μ; furrows 5 , or 4 , tapering sharply
SAXIFRAGACEAE
Quintinia
Size 30μ; furrows 5 , or 6 , blunt
LENTIBULARIACEAE
Utricularia
Size 34μ; furrows 4, riftlike MELIACEAE
Dysoxylum*
Pores absent; furrows 4 , 5 , or 3 ; 10 to 20μ
RUBIACEAE
Galium
Size 13μ; exine sometimes flecked
(b) FURROWS ALMOST ELIMINATED, coinciding with the pores, or both vestigial. Transitional types, mainly repeated in sections to which they most nearly approach.
(1) Furrows not merely coinciding with pores, but extending beyond as rifts or lines of weakness.

Pores clear, wider than the 4 or 6 furrows.
Grains spheroidal.

Dysoxylum*
Size 42μ................................. EPACRIDACEAE
Leucopogon irazeri
Grains flattened; furrows vague; pore rim unthickened.
Exine papillate
STYLIDIACEAE
Exine thin.
Pattern warty; 30μ................ Oreostylidium
Pattern fine; 42μ........................ Phyllachne
Exine thick; 28μ............................... Forstera
Exine faintly flecked, very thin; 21μ

Slits not meridional, equidistant.
Furrows 6; pitted.
Size 22μ........................ . CARYOPHYLLACEAE Spergularia?

Gunnera*
Furrows 12 or 15 , rarely more.
Exine flecked; 48μ
NYC'TAGINACEAE
Heimerlia*
Exine reticulate to pitted PORTULACCACEAE
Size 46μ; mesh bold Claytonia*
Size 36μ; mesh weaker Montia*
(c) FURROWS COMPLETELY ELIMINATED; PORES

PRESENT, typically circular-not reminiscent of furrows. PORED GRAINS (excluding monocolpate forms).
(1) GRAINS SPINY.

Surface reticulate, pitted, or granular; spines scattered.
Pores very numerous; exine reticulate or pitted, thick.
Size 70μ; reticulate; spines long. .CONVOLVULACEAE Ipomoea
Size 100 to 130μ; pitted, very thick; spines ex
ceedingly long MALVACEAE
Hibiscus
Pores few (4 to 6), rimmed; granular MALVACEAE

Surface lophate with spines on ridges; pores 3 or 4 , large

CIC'HORIEAE*
(2) GRAINS NOT SPINY.

Grains typically tricolpate, occasionally tetracolpate (very rarely dicolpate).

Pores with ornamented collars; patternless; 28μ
APOCYNACEAE
Parsonsia*
Pores without ornamented collars.
Grains flattened; angular; exine mainly thick, patterned.
Pores very conspicuous; size 40 to 100μ
ONAGRACEAE
Epilobium*
Pores inconspicuous.
Size 45 to 60μ; grains 3 -armed
LORANTHACEAE
Elytranthe
Size 30 to 36μ.................... . PROTEACEAE
Exine papillate Persoonia
Exine pitted Knightia
Size 25μ.
Exine finely netted SAN'TALACZAE
Exine pitted LORANTHACEAE
Korthalsella
Exine flecked CORIARIACEAE* ${ }^{*}$
Grains neither flattened nor angled; exine
very thin, petternless.
Grains spherical; pores 2-4
URTICACEAE and MORACEAE
Size 10 to 20μ
Size 14 to 23μ
(2) contd.

> Pores scattered, often equidistant; definite symmetry indicated when pores elliptic; grains spheroidal or occasionally elongate.
> Pores not exceeding 15.
> Pores elliptic, typically 12.
> Exine very ihick; mesh strongest in inter-
> colpar areas PORTULACCACEAE
> Size 46μ; mesh bold
> Claytonia*
> Size 36μ; mesh weaker Montia*
> Exine less thick, flecked; furrows 12 to 15
> (number rarely doubled); 48μ
> NYCTAGINACEAE
> Heimerlia*
> Pores circular, clearly defined.
> Exine thick, pores predominantly 12.
> Pores large, membrane more or less patterned.
> Pores very large, rims weak; 55 to 75μ
> LINACEAE
> Linum
> Pores smaller, rims thickened; 36 to 46μ
> C'AMPANULACEAE
> Wahlenbergia
> Pores small; membrane unpatterned; 20 to
> 40μ. CARYOPHYLLACEAE
> Size about 20μ....................... Colobanthus
> Size 30 to 40μ............................ . Stellaria
> Exine thin; pores 4 to 12.
> Pores rather large.
> Exine lophate; ridge adorned, lacunae
> 12; $16 \mu \ldots$. AMARANTHACEAE
> Alternanthera*
> Exine not lophate.
> Pores 16, with collars; 38μ BALANOPHORACEAE
> Dactylanthus
> Pores 6, collarless; 46μ..... EPACRIDACEAE
> Pores small; 4 to 6 .
> Collar vertically thickened; 28μ
> APOC'YNACEAE
> Parsonsia*
> Collar obscure; $23 \mu \ldots .$. PLANTAGINACEAE
> Plantago
> Pores exceeding 15 (not always distinct from mesh in reticulate grains).

Pores large; exine thick, pebbled; membrane patterned; 48μ

CONVOLVULACEAE Calystegia
Pores small; membrane unpatterned.
Exine rericulate, very thick. Size 50 to 70μ; mesh very large

POLYGONACEAE
Polygonum
Size 30 to 48μ; mesh small .. THYMELAEACEAE
Size 40μ; pores clear Pimelea

Exine pitted or reduced; 16 to 26μ
CHENOPODIACEAE

Pores 40 to 50
Exine thick, pitted
Atriplex
Exine thin.
Exine pitted; $24 \mu \ldots$. Salicornia
Exine flecked; 20μ................ . . Suaeda
Pores 30 or fewer; pattern reduced.
Size 23μ
Rhagodia
Size mainly less than 20μ; surface more
wrinkled
Chenopodium
II. GRAINS COMPOUND, arranged in tetrads (mainly tetrahedral)
(A) GRAINS COLPATE: components each with one or three (rarely more) furrows and/or pores.

1. Furrows present, 3 per component; pores against contact faces.

Furrows untapering; pores inconspicuous; exine patternless;
tetrads 38μ in diameter
SAXIFRAGAC'EAE
Carpodetus
Furrows tapering; tetrads mainly less than 35μ.
Tetrads compact; pores sharp.
Exine flecked; rarely pitted; tetrad c. 32μ..... ERICACEAE
Exine very thin; furrows rather short; pores 5μ
Gaultheria
Exine thicker; furrows longer; pores smaller ..Pernettya
Exine almost patternless; tetrads $25-38 \mu$.. EPACRIDACEAE
Exine thick; furrows long and narrow; up to 38μ
Exine thin.
Furrows very short; $25-35 \mu \ldots . . .$. Dracophyllum
Furrows short; up to 38μ............... Pentachondra
Furrows long; quite patternless; 30μ..... Cyathodes*
Tetrads loose, variously arranged, 30μ; furrows weak; pores obscure

Archeria
2. Furrows reduced to pores.
(a) Components with one furrow-pore area.

Tetrad square, 40μ; faintly reticulate
MONIMIACEAE
Hedycarya* \dagger
Tetrad tetrahedral; "pore" large, circular.
Exine strongly reticulate; "pore" sharp; tetrads 50μ MAGNOLIACEAE

Drimys
Exine almost or quite patternless; "pore" vague but
vigorous, reinforced by hyaline bodies ... JUNCACEAE \dagger

Tetrads less than 50μ.	
Organisation obscure.	
Size 30μ	Rostkovia*
Size 36μ	J. maritimus
Organisation clear.	
Size 30μ	Rostkovia*
Size 36μ	... Luzula

\dagger By extreme reduction grains of Hedycarya and Juncus may merge into the Acolpate group [II. (B.)], but careful examination should reveal their derivation.
(b) Components with 3 or more pores.

Pores 3, equatorial; tetrads variously arranged, components mainly over $40 \mu \ldots$. ... ONAGRACEAE Epilobium*
Pores 12-18, hidden in channels on dorsal side of grains; ventral side widest, spiny; tetrads tetrahedral, components $30-44 \mu$

DROSERACEAE
Drosera
(B) GRAINS ACOLPATE; i.e., without either furrows or pores; exine thin. Tetrad formation rarely obligate ... ORCHIDACEAE
Exine patternless; tetrads tetrahedral or square; components
16μ.. Earina type
Exine reticulate.
Tetrads compact; components 20μ; mesh strong Pterostylis type
Tetrads loose; components 26μ; mesh weaker Chiloglottis type

REFERENCES.

Armbruster, L., \& Oenike, G. 1929. Die Pollenformen als Mittel zur Honigerkunstbestimmung. Wachholtz; Neumunster in Holstein.
Auer, V. 1933. Verschiebungen der Wald-und Steppengebiete Feuerlands in Postglazialer Zeit. Acta Geogr. 5, 2, pp. 1-313.
Cranwell, Lucy M. 1938. Fossil Pollens. N.Z. Journ. Sci. \& Tech., 19, pp. 628-645.
1939. Southern-Beech Pollens. Rec. Akld. Inst. \& Mus. 2, pp. 175-196.
1940. Pollen Grains of the New Zealand Conifers. N.Z. Journ. Sci. \& Tech., 22, No. IB, pp. 1B-17B.
Cranwell, Lucy M., \& von Post, L. 1936. Post-Pleistocene Pollen Diagrams from the Southern Hemisphere: I, New Zealand. Geografiska Annaler, H. 3-4, pp. 308-347.
Engler, A. 1926. Angiospermae. Die Nat. Pflanzenfamilien, Bd. 14a, Zweite Auflage. Leipzig, pp. 1-167.
Erdtman, Gunnar. 1936. New Methods in Pollen Analysis. Svensk. Bot. Tidskr. Bd. 30, H.2.
Hegelmaier, F. 1868. Die Lemnaceen: Eine Monographische Untersuchung. Engelmann, Leipzig.
Hutchinson, J. 1926. Families of Flowering Plants. I. Dicotyledons. MacMillan \& Co., London.
1934. II. Monocotyledons. Ibid. pp. 1-243.

Mercer, F. V. 1940. Atmospheric Pollen in the City of Adelaide and Environs. Trans. Roy. Soc. S. Austr. 63.

Skottsberg, C. 1936. Arboreous Nyctaginaceae of Hawaii. Svensk Bot. Tidskr. Bd. 30, H.3.
1939. A hybrid violet from the Hawaiian Islands. Botan. Notiser. Lund.
1940. Notas sobre el genero Arjona. Revista Universitaria. 25, 3, pp. 103-108.

Smith \& Wodehousf, R. P. 1938. American species of Myristicaceae. Brittonia, Vol. 2, 5, pp. 397-402.

Wodehouse, R. P. 1935. Pollen Grains. McGraw Hill Book Co., N.Y. (pp. 1-574).

[^0]: \dagger Quite aberrant types, impossible to understand without reference to related forms in other floras. Tetrapathaea grains seem allied to those of Passiflora, in which each pair of furrows is linked just short of the poles. In these an area of the exine is isolated, whereas in Teucridium the whole mechanism seems to act as a much modified single furrow enclosing an opercular thickening equivalent to the middle of the pore, somewhat as in Nymphaca.

